Standard Methods for the Examination of Water and Wastewater

5210 BIOCHEMICAL OXYGEN DEMAND (BOD)*#(1)

5210 A. Introduction

1. General Discussion

The biochemical oxygen demand (BOD) determination is an empirical test in which standardized laboratory procedures are used to determine the relative oxygen requirements of wastewaters, effluents, and polluted waters. The test has its widest application in measuring waste loadings to treatment plants and in evaluating the BOD-removal efficiency of such treatment systems. The test measures the molecular oxygen utilized during a specified incubation period for the biochemical degradation of organic material (carbonaceous demand) and the oxygen used to oxidize inorganic material such as sulfides and ferrous iron. It also may measure the amount of oxygen used to oxidize reduced forms of nitrogen (nitrogenous demand) unless their oxidation is prevented by an inhibitor. The seeding and dilution procedures provide an estimate of the BOD at pH 6.5 to 7.5.

Measurements of oxygen consumed in a 5-d test period (5-d BOD or BOD_5 , Section 5210B), oxygen consumed after 60 to 90 d of incubation (ultimate BOD or UBOD, Section 5210C), and continuous oxygen uptake (respirometric method, Section 5210D) are described here. Many other variations of oxygen demand measurements exist, including using shorter and longer incubation periods and tests to determine rates of oxygen uptake. Alternative seeding, dilution, and incubation conditions can be chosen to mimic receiving-water conditions, thereby providing an estimate of the environmental effects of wastewaters and effluents.

The UBOD measures the oxygen required for the total degradation of organic material (ultimate carbonaceous demand) and/or the oxygen to oxidize reduced nitrogen compounds (ultimate nitrogenous demand). UBOD values and appropriate kinetic descriptions are needed in water quality modeling studies such as UBOD: BOD_5 ratios for relating stream assimilative capacity to regulatory requirements; definition of river, estuary, or lake deoxygenation kinetics; and instream ultimate carbonaceous BOD (UCBOD) values for model calibration.

2. Carbonaceous Versus Nitrogenous BOD

A number of factors, for example, soluble versus particulate organics, settleable and floatable solids, oxidation of reduced iron and sulfur compounds, or lack of mixing may affect the accuracy and precision of BOD measurements. Presently, there is no way to include adjustments or corrections to account for the effect of these factors.

Oxidation of reduced forms of nitrogen, such as ammonia and organic nitrogen, can be mediated by microorganisms and exert nitrogenous demand. Nitrogenous demand historically has been considered an interference in the determination of BOD, as clearly evidenced by the inclusion of ammonia in the dilution water. The interference from nitrogenous demand can

now be prevented by an inhibitory chemical.¹ If an inhibiting chemical is not used, the oxygen demand measured is the sum of carbonaceous and nitrogenous demands.

Measurements that include nitrogenous demand generally are not useful for assessing the oxygen demand associated with organic material. Nitrogenous demand can be estimated directly from ammonia nitrogen (Section 4500-NH₃); and carbonaceous demand can be estimated by subtracting the theoretical equivalent of the reduced nitrogen oxidation from uninhibited test results. However, this method is cumbersome and is subject to considerable error. Chemical inhibition of nitrogenous demand provides a more direct and more reliable measure of carbonaceous demand.

The extent of oxidation of nitrogenous compounds during the 5-d incubation period depends on the concentration and type of microorganisms capable of carrying out this oxidation. Such organisms usually are not present in raw or settled primary sewage in sufficient numbers to oxidize sufficient quantities of reduced nitrogen forms in the 5-d BOD test. Many biological treatment plant effluents contain sufficient numbers of nitrifying organisms to cause nitrification in BOD tests. Because oxidation of nitrogenous compounds can occur in such samples, inhibition of nitrification as directed in Section 5210B.4*e*6) is recommended for samples of secondary effluent, for samples seeded with secondary effluent, and for samples of polluted waters.

Report results as carbonaceous biochemical oxygen demand ($CBOD_5$) when inhibiting the nitrogenous oxygen demand. When nitrification is not inhibited, report results as BOD₅.

3. Dilution Requirements

The BOD concentration in most wastewaters exceeds the concentration of dissolved oxygen (DO) available in an air-saturated sample. Therefore, it is necessary to dilute the sample before incubation to bring the oxygen demand and supply into appropriate balance. Because bacterial growth requires nutrients such as nitrogen, phosphorus, and trace metals, these are added to the dilution water, which is buffered to ensure that the pH of the incubated sample remains in a range suitable for bacterial growth. Complete stabilization of a sample may require a period of incubation too long for practical purposes; therefore, 5 d has been accepted as the standard incubation period.

If the dilution water is of poor quality, the BOD of the dilution water will appear as sample BOD. This effect will be amplified by the dilution factor. A positive bias will result. The methods included below (Section 5210B and Section 5210C) contain both a dilution-water check and a dilution-water blank. Seeded dilution waters are checked further for acceptable quality by measuring their consumption of oxygen from a known organic mixture, usually glucose and glutamic acid.

The source of dilution water is not restricted and may be distilled, tap, or receiving-stream water free of biodegradable organics and bioinhibitory substances such as chlorine or heavy metals. Distilled water may contain ammonia or volatile organics; deionized waters often are contaminated with soluble organics leached from the resin bed. Use of copper-lined stills or copper fittings attached to distilled water lines may produce water containing excessive amounts of copper (see Section 3500-Cu).

Standard Methods for the Examination of Water and Wastewater

4. Reference

1. YOUNG, J.C. 1973. Chemical methods for nitrification control. J. Water Pollut. Control Fed. 45:637.

5. Bibliography

THERIAULT, E.J., P.D. MCNAMEE & C.T. BUTTERFIELD. 1931. Selection of dilution water for use in oxygen demand tests. *Pub. Health Rep.* 46:1084.

- LEA, W.L. & M.S. NICHOLS. 1937. Influence of phosphorus and nitrogen on biochemical oxygen demand. *Sewage Works J.* 9:34.
- RUCHHOFT, C.C. 1941. Report on the cooperative study of dilution waters made for the Standard Methods Committee of the Federation of Sewage Works Associations. *Sewage Works J.* 13:669.
- MOHLMAN, F.W., E. HURWITZ, G.R. BARNETT & H.K. RAMER. 1950. Experience with modified methods for BOD. *Sewage Ind. Wastes* 22:31.

5210 B. 5-Day BOD Test

1. General Discussion

a. Principle: The method consists of filling with sample, to overflowing, an airtight bottle of the specified size and incubating it at the specified temperature for 5 d. Dissolved oxygen is measured initially and after incubation, and the BOD is computed from the difference between initial and final DO. Because the initial DO is determined shortly after the dilution is made, all oxygen uptake occurring after this measurement is included in the BOD measurement.

b. Sampling and storage: Samples for BOD analysis may degrade significantly during storage between collection and analysis, resulting in low BOD values. Minimize reduction of BOD by analyzing sample promptly or by cooling it to near-freezing temperature during storage. However, even at low temperature, keep holding time to a minimum. Warm chilled samples to $20 \pm 3^{\circ}$ C before analysis.

1) Grab samples—If analysis is begun within 2 h of collection, cold storage is unnecessary. If analysis is not started within 2 h of sample collection, keep sample at or below 4°C from the time of collection. Begin analysis within 6 h of collection; when this is not possible because the sampling site is distant from the laboratory, store at or below 4°C and report length and temperature of storage with the results. In no case start analysis more than 24 h after grab sample collection. When samples are to be used for regulatory purposes make every effort to deliver samples for analysis within 6 h of collection.

2) Composite samples—Keep samples at or below 4°C during compositing. Limit compositing period to 24 h. Use the same criteria as for storage of grab samples, starting the measurement of holding time from end of compositing period. State storage time and conditions as part of the results.

2. Apparatus

a. Incubation bottles: Use glass bottles having 60 mL or greater capacity (300-mL bottles having a ground-glass stopper and a flared mouth are preferred). Clean bottles with a detergent, rinse thoroughly, and drain before use. As a precaution against drawing air into the dilution bottle during incubation, use a water seal. Obtain satisfactory water seals by inverting bottles in a water bath or by adding water to the flared mouth of special BOD bottles. Place a paper or plastic cup or foil cap over flared mouth of bottle to reduce evaporation of the water seal during incubation.

b. Air incubator or water bath, thermostatically controlled at $20 \pm 1^{\circ}$ C. Exclude all light to prevent possibility of photosynthetic production of DO.

3. Reagents

Prepare reagents in advance but discard if there is any sign of precipitation or biological growth in the stock bottles. Commercial equivalents of these reagents are acceptable and different stock concentrations may be used if doses are adjusted proportionally.

a. Phosphate buffer solution: Dissolve 8.5 g KH_2PO_4 , 21.75 g K_2HPO_4 , 33.4 g Na_2HPO_4 ·7 H_2O , and 1.7 g NH_4Cl in about 500 mL distilled water and dilute to 1 L. The pH should be 7.2 without further adjustment. Alternatively, dissolve 42.5 g KH_2PO_4 or 54.3 g K_2HPO_4 in about 700 mL distilled water. Adjust pH to 7.2 with 30% NaOH and dilute to 1 L.

b. Magnesium sulfate solution: Dissolve 22.5 g MgSO₄·7H₂O in distilled water and dilute to 1 L.

c. Calcium chloride solution: Dissolve 27.5 g CaCl₂ in distilled water and dilute to 1 L.

d. Ferric chloride solution: Dissolve 0.25 g $\text{FeCl}_3 \cdot 6\text{H}_2\text{O}$ in distilled water and dilute to 1 L.

e. Acid and alkali solutions, 1N, for neutralization of caustic or acidic waste samples.

1) Acid—Slowly and while stirring, add 28 mL conc sulfuric acid to distilled water. Dilute to 1 L.

2) Alkali—Dissolve 40 g sodium hydroxide in distilled water. Dilute to 1 L.

f. Sodium sulfite solution: Dissolve 1.575 g Na₂SO₃ in 1000 mL distilled water. This solution is not stable; prepare daily.

g. Nitrification inhibitor, 2-chloro-6-(trichloromethyl) pyridine.*#(2)

h. Glucose-glutamic acid solution: Dry reagent-grade glucose and reagent-grade glutamic acid at 103°C for 1 h. Add 150 mg glucose and 150 mg glutamic acid to distilled water and dilute to 1 L. Prepare fresh immediately before use.

i. Ammonium chloride solution: Dissolve 1.15 g NH_4Cl in about 500 mL distilled water, adjust pH to 7.2 with NaOH solution, and dilute to 1 L. Solution contains 0.3 mg N/mL.

j. Dilution water: Use demineralized, distilled, tap, or natural water for making sample

[©] Copyright 1999 by American Public Health Association, American Water Works Association, Water Environment Federation

dilutions.

4. Procedure

a. Preparation of dilution water: Place desired volume of water ($\P 3 j$) in a suitable bottle and add 1 mL each of phosphate buffer, MgSO₄, CaCl₂, and FeCl₃ solutions/L of water. Seed dilution water, if desired, as described in $\P 4d$. Test dilution water as described in $\P 4h$ so that water of assured quality always is on hand.

Before use bring dilution water temperature to $20 \pm 3^{\circ}$ C. Saturate with DO by shaking in a partially filled bottle or by aerating with organic-free filtered air. Alternatively, store in cotton-plugged bottles long enough for water to become saturated with DO. Protect water quality by using clean glassware, tubing, and bottles.

b. Dilution water storage: Source water ($\P \ 3 \ j$) may be stored before use as long as the prepared dilution water meets quality control criteria in the dilution water blank ($\P \ 4h$). Such storage may improve the quality of some source waters but may allow biological growth to cause deterioration in others. Preferably do not store prepared dilution water for more than 24 h after adding nutrients, minerals, and buffer unless dilution water blanks consistently meet quality control limits. Discard stored source water if dilution water blank shows more than 0.2 mg/L DO depletion in 5 d.

c. Glucose-glutamic acid check: Because the BOD test is a bioassay its results can be influenced greatly by the presence of toxicants or by use of a poor seeding material. Distilled waters frequently are contaminated with copper; some sewage seeds are relatively inactive. Low results always are obtained with such seeds and waters. Periodically check dilution water quality, seed effectiveness, and analytical technique by making BOD measurements on a mixture of 150 mg glucose/L and 150 mg glutamic acid/L as a "standard" check solution. Glucose has an exceptionally high and variable oxidation rate but when it is used with glutamic acid, the oxidation rate is stabilized and is similar to that obtained with many municipal wastes. Alternatively, if a particular wastewater contains an identifiable major constituent that contributes to the BOD, use this compound in place of the glucose-glutamic acid.

Determine the 5-d 20°C BOD of a 2% dilution of the glucose-glutamic acid standard check solution using the techniques outlined in $\$s 4d \cdot j$. Adjust concentrations of commercial mixtures to give 3 mg/L glucose and 3 mg/L glutamic acid in each GGA test bottle. Evaluate data as described in \$6, Precision and Bias.

d. Seeding:

1) Seed source—It is necessary to have present a population of microorganisms capable of oxidizing the biodegradable organic matter in the sample. Domestic wastewater, unchlorinated or otherwise-undisinfected effluents from biological waste treatment plants, and surface waters receiving wastewater discharges contain satisfactory microbial populations. Some samples do not contain a sufficient microbial population (for example, some untreated industrial wastes, disinfected wastes, high-temperature wastes, or wastes with extreme pH values). For such wastes seed the dilution water or sample by adding a population of microorganisms. The preferred seed is effluent or mixed liquor from a

biological treatment system processing the waste. Where such seed is not available, use supernatant from domestic wastewater after settling at room temperature for at least 1 h but no longer than 36 h. When effluent or mixed liquor from a biological treatment process is used, inhibition of nitrification is recommended.

Some samples may contain materials not degraded at normal rates by the microorganisms in settled domestic wastewater. Seed such samples with an adapted microbial population obtained from the undisinfected effluent or mixed liquor of a biological process treating the waste. In the absence of such a facility, obtain seed from the receiving water below (preferably 3 to 8 km) the point of discharge. When such seed sources also are not available, develop an adapted seed in the laboratory by continuously aerating a sample of settled domestic wastewater and adding small daily increments of waste. Optionally use a soil suspension or activated sludge, or a commercial seed preparation to obtain the initial microbial population. Determine the existence of a satisfactory population by testing the performance of the seed in BOD tests on the sample. BOD values that increase with time of adaptation to a steady high value indicate successful seed adaptation.

2) Seed control—Determine BOD of the seeding material as for any other sample. This is the *seed control*. From the value of the seed control and a knowledge of the seeding material dilution (in the dilution water) determine seed DO uptake. Ideally, make dilutions of seed such that the largest quantity results in at least 50% DO depletion. A plot of DO depletion, in milligrams per liter, versus milliters of seed for all bottles having a 2-mg/L depletion and a 1.0-mg/L minimum residual DO should present a straight line for which the slope indicates DO depletion per milliliter of seed. The DO-axis intercept is oxygen depletion caused by the dilution water and should be less than 0.1 mg/L (¶ 4*h*). Alternatively, divide DO depletion and a 1.0-mg/L residual DO. Average the results for all bottles meeting minimum depletion and residual DO criteria. The DO uptake attributable to the seed added to each bottle should be between 0.6 and 1.0 mg/L, but the amount of seed added should be adjusted from this range to that required to provide glucose-glutamic acid check results in the range of 198 ± 30.5 mg/L. To determine DO uptake for a test bottle, subtract DO uptake attributable to the seed from total DO uptake (see ¶ 5).

Techniques for adding seeding material to dilution water are described for two sample dilution methods (¶ 4 f).

e. Sample pretreatment: Check pH of all samples before testing unless previous experience indicates that pH is within the acceptable range.

1) Samples containing caustic alkalinity (pH >8.5) or acidity (pH <6.0)—Neutralize samples to pH 6.5 to 7.5 with a solution of sulfuric acid (H_2SO_4) or sodium hydroxide (NaOH) of such strength that the quantity of reagent does not dilute the sample by more than 0.5%. The pH of dilution water should not be affected by the lowest sample dilution. Always seed samples that have been pH-adjusted.

2) Samples containing residual chlorine compounds—If possible, avoid samples containing residual chlorine by sampling ahead of chlorination processes. If the sample has been chlorinated but no detectable chlorine residual is present, seed the dilution water. If

Standard Methods for the Examination of Water and Wastewater

residual chlorine is present, dechlorinate sample and seed the dilution water (¶ 4 *f*). Do not test chlorinated/dechlorinated samples without seeding the dilution water. In some samples chlorine will dissipate within 1 to 2 h of standing in the light. This often occurs during sample transport and handling. For samples in which chlorine residual does not dissipate in a reasonably short time, destroy chlorine residual by adding Na₂SO₃ solution. Determine required volume of Na₂SO₃ solution on a 100- to 1000-mL portion of neutralized sample by adding 10 mL of 1 + 1 acetic acid or 1 + 50 H₂SO₄, 10 mL potassium iodide (KI) solution (10 g/100 mL) per 1000 mL portion, and titrating with Na₂SO₃ solution to the starch-iodine end point for residual. Add to neutralized sample the relative volume of Na₂SO₃ solution determined by the above test, mix, and after 10 to 20 min check sample for residual chlorine. (NOTE: Excess Na₂SO₃ exerts an oxygen demand and reacts slowly with certain organic chloramine compounds that may be present in chlorinated samples.)

3) Samples containing other toxic substances—Certain industrial wastes, for example, plating wastes, contain toxic metals. Such samples often require special study and treatment.

4) Samples supersaturated with DO—Samples containing more than 9 mg DO/L at 20°C may be encountered in cold waters or in water where photosynthesis occurs. To prevent loss of oxygen during incubation of such samples, reduce DO to saturation at 20°C by bringing sample to about 20°C in partially filled bottle while agitating by vigorous shaking or by aerating with clean, filtered compressed air.

5) Sample temperature adjustment—Bring samples to $20 \pm 1^{\circ}$ C before making dilutions.

6) Nitrification inhibition—If nitrification inhibition is desired add 3 mg 2-chloro-6-(trichloro methyl) pyridine (TCMP) to each 300-mL bottle before capping or add sufficient amounts to the dilution water to make a final concentration of 10 mg/L. (NOTE: Pure TCMP may dissolve slowly and can float on top of the sample. Some commercial formulations dissolve more readily but are not 100% TCMP; adjust dosage accordingly.) Samples that may require nitrification inhibition include, but are not limited to, biologically treated effluents, samples seeded with biologically treated effluents, and river waters. Note the use of nitrogen inhibition in reporting results.

f. Dilution technique: Make several dilutions of sample that will result in a residual DO of at least 1 mg/L and a DO uptake of at least 2 mg/L after a 5-d incubation. Five dilutions are recommended unless experience with a particular sample shows that use of a smaller number of dilutions produces at least two bottles giving acceptable minimum DO depletion and residual limits. A more rapid analysis, such as COD, may be correlated approximately with BOD and serve as a guide in selecting dilutions. In the absence of prior knowledge, use the following dilutions: 0.0 to 1.0% for strong industrial wastes, 1 to 5% for raw and settled wastewater, 5 to 25% for biologically treated effluent, and 25 to 100% for polluted river waters.

Prepare dilutions either in graduated cylinders or volumetric glassware, and then transfer to BOD bottles or prepare directly in BOD bottles. Either dilution method can be combined with any DO measurement technique. The number of bottles to be prepared for each dilution depends on the DO technique and the number of replicates desired.

Standard Methods for the Examination of Water and Wastewater

When using graduated cylinders or volumetric flasks to prepare dilutions, and when seeding is necessary, add seed either directly to dilution water or to individual cylinders or flasks before dilution. Seeding of individual cylinders or flasks avoids a declining ratio of seed to sample as increasing dilutions are made. When dilutions are prepared directly in BOD bottles and when seeding is necessary, add seed directly to dilution water or directly to the BOD bottles. When a bottle contains more than 67% of the sample after dilution, nutrients may be limited in the diluted sample and subsequently reduce biological activity. In such samples, add the nutrient, mineral, and buffer solutions (¶ 3a through e) directly to individual BOD bottles at a rate of 1 mL/L (0.33 mL/300-mL bottle) or use commercially prepared solutions designed to dose the appropriate bottle size.

1) Dilutions prepared in graduated cylinders or volumetric flasks—If the azide modification of the titrimetric iodometric method (Section 4500-O.C) is used, carefully siphon dilution water, seeded if necessary, into a 1- to 2-L-capacity flask or cylinder. Fill half full without entraining air. Add desired quantity of carefully mixed sample and dilute to appropriate level with dilution water. Mix well with a plunger-type mixing rod; avoid entraining air. Siphon mixed dilution into two BOD bottles. Determine initial DO on one of these bottles. Stopper the second bottle tightly, water-seal, and incubate for 5 d at 20°C. If the membrane electrode method is used for DO measurement, siphon dilution mixture into one BOD bottle. Determine initial DO on this bottle and replace any displaced contents with sample dilution to fill the bottle. Stopper tightly, water-seal, and incubate for 5 d at 20°C.

2) Dilutions prepared directly in BOD bottles—Using a wide-tip volumetric pipet, add the desired sample volume to individual BOD bottles of known capacity. Add appropriate amounts of seed material either to the individual BOD bottles or to the dilution water. Fill bottles with enough dilution water, seeded if necessary, so that insertion of stopper will displace all air, leaving no bubbles. For dilutions greater than 1:100 make a primary dilution in a graduated cylinder before making final dilution in the bottle. When using titrimetric iodometric methods for DO measurement, prepare two bottles at each dilution. Determine initial DO on one bottle. Stopper second bottle tightly, water-seal, and incubate for 5 d at 20°C. If the membrane electrode method is used for DO measurement, prepare only one BOD bottle for each dilution. Determine initial DO on this bottle and replace any displaced contents with dilution water to fill the bottle. Stopper tightly, water-seal, and incubate for 5 d at 20°C. Rinse DO electrode between determinations to prevent cross-contamination of samples.

Use the azide modification of the iodometric method (Section 4500-O.C) or the membrane electrode method (Section 4500-O.G) to determine initial DO on all sample dilutions, dilution water blanks, and where appropriate, seed controls.

If the membrane electrode method is used, the azide modification of the iodometric method (Method 4500-O.C) is recommended for calibrating the DO probe.

g. Determination of initial DO: If the sample contains materials that react rapidly with DO, determine initial DO immediately after filling BOD bottle with diluted sample. If rapid initial DO uptake is insignificant, the time period between preparing dilution and measuring initial DO is not critical but should not exceed 30 min.

Standard Methods for the Examination of Water and Wastewater

h. Dilution water blank: Use a dilution water blank as a rough check on quality of unseeded dilution water and cleanliness of incubation bottles. Together with each batch of samples incubate a bottle of unseeded dilution water. Determine initial and final DO as in \P s 4g and j. The DO uptake should not be more than 0.2 mg/L and preferably not more than 0.1 mg/L Discard all dilution water having a DO uptake greater than 0.2 mg/L and either eliminate source of contamination or select an alternate dilution water source.

i. Incubation: Incubate at $20^{\circ}C \pm 1^{\circ}C$ BOD bottles containing desired dilutions, seed controls, dilution water blanks, and glucose-glutamic acid checks. Water-seal bottles as described in $\P 4 f$.

j. Determination of final DO: After 5 d incubation determine DO in sample dilutions, blanks, and checks as in $\P 4g$.

5. Calculation

For each test bottle meeting the 2.0-mg/L minimum DO depletion and the 1.0-mg/L residual DO, calculate BOD₅ as follows:

When dilution water is not seeded:

BOD₅, mg/L =
$$\frac{D_1 - D_2}{P}$$

When dilution water is seeded:

BOD₅, mg/L =
$$\frac{D_1 - D_2}{P}$$

where:

 $D_1 = DO$ of diluted sample immediately after preparation, mg/L,

 $D_2 = DO$ of diluted sample after 5 d incubation at 20°C, mg/L,

P = decimal volumetric fraction of sample used,

 $B_1 = \text{DO of seed control before incubation, mg/L (} 4d),$

 $B_2 = DO$ of seed control after incubation mg/L (¶ 4d), and

f = ratio of seed in diluted sample to seed in seed control = (% seed in diluted sample)/(% seed in seed control).

If seed material is added directly to sample or to seed control bottles:

f = (volume of seed in diluted sample)/(volume of seed in seed control)

Report results as CBOD₅ if nitrification is inhibited.

If more than one sample dilution meets the criteria of a residual DO of at least 1 mg/L and a DO depletion of at least 2 mg/L and there is no evidence of toxicity at higher sample concentrations or the existence of an obvious anomaly, average results in the acceptable

[©] Copyright 1999 by American Public Health Association, American Water Works Association, Water Environment Federation

range.

In these calculations, do not make corrections for DO uptake by the dilution water blank during incubation. This correction is unnecessary if dilution water meets the blank criteria stipulated above. If the dilution water does not meet these criteria, proper corrections are difficult ; do not record results or, as a minimum, mark them as not meeting quality control criteria.

6. Precision and Bias

There is no measurement for establishing bias of the BOD procedure. The glucose-glutamic acid check prescribed in $\P 4c$ is intended to be a reference point for evaluation of dilution water quality, seed effectiveness, and analytical technique. Single-laboratory tests using a 300-mg/L mixed glucose-glutamic acid solution provided the following results:

Number of months: 14 Number of triplicates: 421 Average monthly recovery: 204 mg/L Average monthly standard deviation: 10.4 mg/L

In a series of interlaboratory studies,¹ each involving 2 to 112 laboratories (and as many analysts and seed sources), 5-d BOD measurements were made on synthetic water samples containing a 1:1 mixture of glucose and glutamic acid in the total concentration range of 3.3 to 231 mg/L. The regression equations for mean value, \bar{X} , and standard deviation, *S*, from these studies were:

 $\overline{X} = 0.658$ (added level, mg/L) + 0.280 mg/L S = 0.100 (added level, mg/L) + 0.547 mg/L

For the 300-mg/L mixed primary standard, the average 5-d BOD would be 198 mg/L with a standard deviation of 30.5 mg/L. When nitrification inhibitors are used, GGA test results falling outside the 198 ± 30.5 control limit quite often indicate use of incorrect amounts of seed. Adjust amount of seed added to the GGA test to achieve results falling within this range.

a. *Control limits:* Because of many factors affecting BOD tests in multilaboratory studies and the resulting extreme variability in test results, one standard deviation, as determined by interlaboratory tests, is recommended as a control limit for individual laboratories. Alternatively, for each laboratory, establish its control limits by performing a minimum of 25 glucose-glutamic acid checks ($\P 4c$) over a period of several weeks or months and calculating the mean and standard deviation. Use the mean ± 3 standard deviations as the control limit for future glucose-glutamic acid checks. Compare calculated control limits to the single-laboratory tests presented above and to interlaboratory results. If control limits are outside the range of 198 \pm 30.5, re-evaluate the control limits and investigate source of the problem. If measured BOD for a glucose-glutamic acid check is outside the accepted control limit range, reject tests made with that seed and dilution water.

b. *Working range and detection limit:* The working range is equal to the difference between the maximum initial DO (7 to 9 mg/L) and minimum DO residual of 1 mg/L multiplied by the dilution factor. A lower detection limit of 2 mg/L is established by the requirement for a minimum DO depletion of 2 mg/L.

7. Reference

 U.S. ENVIRONMENTAL PROTECTION AGENCY, OFFICE OF RESEARCH AND DEVELOPMENT. 1986. Method-by-Method Statistics from Water Pollution (WP) Laboratory Performance Evaluation Studies. Quality Assurance Branch, Environmental Monitoring and Support Lab., Cincinnati, Ohio.

8. Bibliography

YOUNG, J.C., G.N. MCDERMOTT & D. JENKINS . 1981. Alterations in the BOD procedure for the 15th edition of Standard Methods for the Examination of Water and Wastewater. J. *Water Pollut. Control Fed.* 53:1253.

5210 C. Ultimate BOD Test (PROPOSED)

1. General Discussion

The ultimate BOD test is an extension of the 5-d dilution BOD test as described in 5210B but with a number of specific test requirements and differences in application. The user should be familar with the 5210B procedure before conducting tests for UBOD.

a. Principle: The method consists of placing a single sample dilution in full, airtight bottles and incubating under specified conditions for an extended period depending on wastewater, effluent, river, or estuary quality.¹ Dissolved oxygen (DO) is measured (with probes) initially and intermittently during the test. From the DO versus time series, UBOD is calculated by an appropriate statistical technique. For improved accuracy, run tests in triplicate.

Bottle size and incubation time are flexible to accommodate individual sample characteristics and laboratory limitations. Incubation temperature, however, is 20°C. Most effluents and some naturally occurring surface waters contain materials with oxygen demands exceeding the DO available in air-saturated water. Therefore, it is necessary either to dilute the sample or to monitor DO frequently to ensure that low DO or anaerobic conditions do not occur. When DO concentrations approach 2 mg/L, the sample should be reaerated.

Because bacterial growth requires nutrients such as nitrogen, phosphorus, and trace metals, the necessary amounts may be added to the dilution water together with buffer to ensure that pH remains in a range suitable for bacterial growth and seed to provide an adequate bacterial population. However, if the result is being used to estimate the rate of oxidation of naturally occurring surface waters, addition of nutrients and seed probably accelerates the decay rate and produces misleading results. If only UBOD is desired, it may be advantageous to add supplemental nutrients that accelerate decay and reduce the test © Copyright 1999 by American Public Health Association, American Water Works Association, Water Environment Federation

duration. When nutrients are used, they also should be used in the dilution water blank. Because of the wide range of water and wastewater characteristics and varied applications of UBOD data, no specific nutrient or buffer formulations are included.

The extent of oxidation of nitrogenous compounds during the prescribed incubation period depends on the presence of microorganisms capable of carrying out this oxidation. Such organisms may not be present in wastewaters in sufficient numbers to oxidize significant quantities of reduced nitrogen. This situation may be reversed in naturally occurring surface waters. Erratic results may be obtained when a nitrification inhibitor is used;² therefore, the specified method precludes use of a nitrogen inhibitor unless prior experimental evidence on the particular sample suggests that it is acceptable.*#(3) Monitor NO₂⁻-N and NO₃⁻-N to compute the oxygen equivalency of the nitrification reaction. When these values are subtracted from the DO vs. time series, the carbonaceous BOD time series can be constructed.³ *b. Sampling and storage:* See Section 5210B.1*b.*

2. Apparatus

a. Incubation bottles: Glass bottles with ground-glass stoppers,†#(4) 2-L (or larger) capacity. Glass serum bottles of 4- to 10-L capacity are available. Alternatively use nonground-glass bottles with nonbiodegradable plastic caps as a plug insert. Do not reuse the plugs because discoloration occurs with continued use. Replace plugs every 7 to 14 d. Do not use rubber stoppers that may exert an oxygen demand. Clean bottles with a detergent and wash with dilute HCl (*3N*) to remove surface films and precipitated inorganic salts; rinse thoroughly with DI water before use. Cover top of bottles with paper after rinsing to prevent dust from collecting. To prevent drawing air into the sample bottle during incubation, use a water seal. If the bottle does not have a flared mouth, construct a water seal by making a watertight dam around the stopper (or plug) and fill with water from the reservoir as necessary. Cover dam with clean aluminum foil to retard evaporation. If a 2-L BOD bottle is used, fill reservoir with sample and cover with a polyethylene cap before incubation.

Place a clean magnetic stirring bar in each bottle to mix contents before making DO measurement or taking a subsample. Do not remove the magnets until the test is complete.

Alternatively use a series of 300-mL BOD bottles as described in 5210B, if larger bottles are not available or incubation space is limited.

b. Reservoir bottle: 4-L or larger glass bottle. Close with screw plastic cap or non-rubber plug.

c. Incubator or water bath, thermostatically controlled at $20 \pm 1^{\circ}$ C. Exclude all light to prevent the possibility of photosynthetic production of DO.

d. Oxygen-sensitive membrane electrode: See Section 4500-O.G.2.

3. Procedure

a. River water samples: Preferably fill large BOD bottle (>2 L, or alternatively 6 or more 300-mL BOD bottles) with sample at 20°C. Add no nutrients, seed, or nitrification inhibitor if in-bottle decay rates will be used to estimate in-stream rates. Do not dilute sample unless it is known by pretesting or by experience to have a high ultimate BOD (>20 mg/L).

Standard Methods for the Examination of Water and Wastewater

Measure DO in each bottle, stopper, and make an airtight seal. Incubate at 20°C in the dark.

Measure DO in each bottle at intervals of at least 2 to 5 d over a period of 30 to 60 d (minimum of 6 to 8 readings) or longer under special circumstances. To avoid oxygen depletion in samples containing NH_3 -N, measure DO more frequently until nitrification has taken place. If DO falls to about 2 mg/L, reaerate as directed below. Replace sample lost by the cap and DO probe displacement by adding 1 to 2 mL sample from the reservoir bottle.

When DO approaches 2 mg/L, reaerate. Pour a small amount of sample into a clean vessel and reaerate the remainder directly in the bottle by vigorous shaking or bubbling with purified air (medical grade). Refill bottle from the storage reservoir and measure DO. This concentration becomes the initial DO for the next measurement. If using 300-mL BOD bottles, pour all of the sample from the several bottles used into a clean vessel, reaerate, and refill the small bottles.

Analyze for nitrate plus nitrite nitrogen (NO₃⁻-N + NO₂⁻-N) (see Section 4500-NO₂⁻ and Section 4500-NO₃⁻) on Days 0, 5, 10, 15, 20, and 30. Alternatively, determine NO₂⁻-N and NO₃⁻-N each time DO is determined, thereby producing corresponding BOD and nitrogen determinations. If the ultimate demand occurs at a time greater than 30 d, make additional analyses at 30-d intervals. Remove 10 to 20 mL from the bottle for these analyses. Refill bottle as necessary from the reservoir bottle. Preserve NO₂⁻-N + NO₃⁻-N subsample with H₂SO₄ to pH <2 and refrigerate. If the purpose of the UBOD test is to assess the UBOD and not to provide data for rate calculations, measure nitrate nitrogen concentration only at Day 0 and on the last day of the test (kinetic rate estimates are not useful when the nitrification reaction is not followed).

Calculate oxygen consumption during each time interval and make appropriate corrections for nitrogenous oxygen demand. Correct by using $3.43 \times \text{the NH}_3\text{-N}$ to $\text{NO}_2^{-}\text{-N}$ conversion plus $1.14 \times \text{the NO}_2^{-}\text{-N}$ to $\text{NO}_3^{-}\text{-N}$ conversion to reflect the stoichiometry of the oxidation of NH_4^+ to NO_2^- or NO_3^- .

When using a dilution water blank, subtract DO uptake of the blank from the total DO consumed. High-quality reagent water without nutrients typically will consume a maximum of 1 mg DO/L in a 30- to 90-d period. If DO uptake of the dilution water is greater than 0.5 mg/L for a 20-d period, or 1 mg/L for a 90-d period, report the magnitude of the correction and try to obtain higher-quality dilution water for use with subsequent UBOD tests.

When the weekly DO consumption drops below 1 to 2% of the total accumulative consumption, calculate the ultimate BOD using a nonlinear regression method.

b. Wastewater treatment plant samples: Use high-quality reagent water (see Section 1080) for dilution water. Add no nitrification inhibitors if decay rates are desired. If seed and nutrients are necessary, add the same amounts of each to the dilution water blank. Use minimal sample dilution. As a rule of thumb, the ultimate BOD of the diluted sample should be in the range of 20 to 30 mg/L. Dilution to this level probably will require two or three sample reaerations during the incubation period to avoid having dissolved oxygen © Copyright 1999 by American Public Health Association, American Water Works Association, Water Environment Federation

concentrations fall below 2 mg/L.

Use 2-L or larger BOD bottles (alternatively, multiple 300-mL BOD bottles) for each dilution. Add desired volume of sample to each bottle and fill with dilution water.

Fill a BOD bottle with dilution water to serve as a dilution water blank. Treat blank the same as all samples. Follow procedure given in $\P 3a$ and incubate for at least as long as UBOD test.

4. Calculations

An example of results obtained for a wastewater sample, undiluted, without seed and nutrients, is given in Table 5210:I.

UBOD can be estimated by using a first-order model described as follows:

$$BOD_{t} = UBOD (1 - e^{-kt})$$

where:

 BOD_t = oxygen uptake measured at time *t*, mg/L, and

k = first-order oxygen uptake rate.

The data in Table 5210:I were analyzed with a nonlinear regression technique applied to the above first-order model.⁴ However, a first-order kinetic model may not always be the best choice. Significantly better statistical fits usually are obtained with alternative kinetic models including sum of two first-order and logistic function models.^{1,3-8}

5. Precision and Bias

The precision of the ultimate BOD test was assessed with a series of replicate tests in a single laboratory. Interlaboratory studies have not been conducted.

		UBOD	
Reference	Replicate No.	mg/L	Precision Summary*
2	1	154	μ = 151 mg/L
	2	154	
	3	145	CV = 3.5%
5	1	10.3	
	2	11.1	
	3	9.6	μ = 10.0 mg/L
	4	9.9	
	5	9.8	CV = 5.8%
	6	9.6	
6	1	12.8	μ = 12.4 mg/L

		UBOD	
Reference	Replicate No.	mg/L	Precision Summary*
	2	12.6	
	3	12.6	CV = 4.4%
	4	11.6	

 $^{*}\mu$ = mean, CV = coefficient of variation.

Bias was assessed by determining the BOD of a known concentration of glucose (150 mg/L) and glutamic acid (150 mg/L). This solution has a UBOD of 321 mg/L to 308 mg/L, depending on extent of nitrification. The results of the study conducted in triplicate were:¹

Estimated*	Theoretical	
UBOD <i>mg/L</i>	BOD <i>mg/L</i>	Percent Difference
	-	
276	308/321	-10/-14
310	308/321	+1/-3
303	308/321	-2/-6

*By statistical model.

6. References

- 1. MARTONE, C.H. 1976. Studies Related to the Determination of Biodegradability and Long Term BOD. M.S. thesis, Dep. Civil Engineering, Tufts Univ., Medford, Mass.
- NATIONAL COUNCIL OF THE PAPER INDUSTRY FOR AIR AND STREAM IMPROVEMENT, INC. 1986. A Review of the Separation of Carbonaceous and Nitrogenous BOD in Long-Term BOD Measurements. Tech. Bull. No. 461, New York, N.Y.
- 3. NATIONAL COUNCIL OF THE PAPER INDUSTRY FOR AIR AND STREAM IMPROVEMENT, INC. 1982. A Review of Ultimate BOD and Its Kinetic Formulation for Pulp and Paper Mill Effluents. Tech. Bull. No. 382, New York, N.Y.
- 4. BARNWELL, T. 1980. Least Squares Estimates of BOD Parameters. J. Environ. Eng. Div., Proc. Amer. Soc. Civil Eng. 107(EE6):1197.
- NATIONAL COUNCIL OF THE PAPER INDUSTRY FOR AIR AND STREAM IMPROVEMENT, INC. 1982. A Proposal to Examine the Effect of Mixing on Long Term BOD Test. NE82-01, New York, N.Y.
- 6. NATIONAL COUNCIL OF THE PAPER INDUSTRY FOR AIR AND STREAM IMPROVEMENT, INC. 1982. A Study of the Selection, Calibration, and Verification of Mathematical Water Quality Models. Tech. Bull. No. 367, New York, N.Y.
- 7. NATIONAL COUNCIL OF THE PAPER INDUSTRY FOR AIR AND STREAM

Standard Methods for the Examination of Water and Wastewater

IMPROVEMENT, INC. 1987. User's Manual for Parameter Estimation for First Order Ultimate BOD Decay, BODFO. Tech. Bull. No. 529, New York, N.Y.

8. CHU, W.S. & E.W. STRECKER. 1972. Parameter Identification In Water System Model. Dep. Civil Engineering, Univ. Washington, Seattle.

5210 D. Respirometric Method (PROPOSED)

1. General Discussion

a. Principle: Respirometric methods provide direct measurement of the oxygen consumed by microorganisms from an air or oxygen-enriched environment in a closed vessel under conditions of constant temperature and agitation.

b. Uses: Respirometry measures oxygen uptake more or less continuously over time. Respirometric methods are useful for assessing: biodegradation of specific chemicals; treatability of organic industrial wastes; the effect of known amounts of toxic compounds on the oxygen-uptake reaction of a test wastewater or organic chemical; the concentration at which a pollutant or a wastewater measurably inhibits biological degradation; the effect of various treatments such as disinfection, nutrient addition, and pH adjustment on oxidation rates; the oxygen requirement for essentially complete oxidation of biologically oxidizable matter; the need for using adapted seed in other biochemical oxygen-uptake measurements, such as the dilution BOD test; and stability of sludges.

Respirometric data typically will be used comparatively, that is, in a direct comparison between oxygen uptakes from two test samples or from a test sample and a control. Because of inherent differences among uses, among seed cultures, among applications of results, and among instruments, a single procedure for respirometric tests applicable to all cases cannot be defined. Therefore, only basic recommendations and guidelines for overall test setup and procedure are given. Follow manufacturer's instructions for operating details for specific commercial instruments.

c. Types of respirometers: Four principal types of commercial respirometers are available. Manometric respirometers relate oxygen uptake to the change in pressure caused by oxygen consumption while maintaining a constant volume. Volumetric respirometers measure oxygen uptake in incremental changes in gas volume while maintaining a constant pressure at the time of reading. Electrolytic respirometers monitor the amount of oxygen produced by electrolysis of water to maintain a constant oxygen pressure within the reaction vessel. Direct-input respirometers deliver oxygen to the sample from a pure oxygen supply through metering on demand as detected by minute pressure differences. Most respirometers have been instrumented to permit data collection and processing by computer. Reaction-vessel contents are mixed by using a magnetic or mechanical stirring device or by bubbling the gaseous phase within the reaction vessel through the liquid phase. All respirometers remove carbon dioxide produced during biological growth by suspending a concentrated adsorbent (granular or solution) within the closed reaction chamber or by recirculating the gas phase through an external scrubber.

d. Interferences: Evolution of gases other than CO_2 may introduce errors in pressure or volume measurements; this is uncommon in the presence of dissolved oxygen. Incomplete CO_2 absorption will introduce errors if appropriate amounts and concentrations of alkaline absorbent are not used. Temperature fluctuations or inadequate mixing will introduce error. Fluctuations in barometric pressure can cause errors with some respirometers. Become familiar with the limits of the instrument to be used.

e. Minimum detectable concentration: Most commercial respirometers can detect oxygen demand in increments as small as 0.1 mg but test precision depends on the total amount of oxygen consumed at the time of reading, the precision of pressure or volume measurement, and the effect of temperature and barometric pressure changes. Upper limits of oxygen uptake rate are determined by the ability to transfer oxygen into the solution from the gas phase, which typically is related to mixing intensity. Transfer limits typically range from less than 10 mg $O_2/L/h$ for low-intensity mixing to above 100 mg $O_2/L/h$ for high-intensity mixing.

f. Relationship to dilution BOD: Variations in waste composition, substrate concentration, mixing, and oxygen concentrations from one wastewater source to another generally preclude use of a general relationship between oxygen uptake by respirometers and the 5-d, 20° C, BOD (see 5210B, above). Reasonably accurate correlations may be possible for a specific wastewater. The incubation period for respirometric measurements need not be 5 d because equally valid correlations can be made between the 5-d dilution BOD and respirometric oxygen uptake at any time after 2 d.^{1,2} The point of common dilution and respirometric BOD seems to occur at about 2 to 3 d incubation for municipal wastewaters. Correlations between respirometric measurements and 5-d BOD for industrial wastes and specific chemicals are less certain. Respirometric measurements also can provide an indication of the ultimate biochemical oxygen demand (UBOD) (see Section 5210C). In many cases, it is reasonable to consider that the 28-to 30-d oxygen uptake is essentially equal to the UBOD.³

More commonly, respirometers are used as a diagnostic tool. The continuous readout of oxygen consumption in respirometric measurements indicates lag, toxicity, or any abnormalities in the biodegradation reaction. The change in the normal shape of an oxygen-uptake curve in the first few hours may help to identify the effect of toxic or unusual wastes entering a treatment plant in time to make operating corrections.

g. Relationship to other test methods and protocols: This method supports most of the protocols and guidelines established by the European Organization for Economic Co-operation and Development³ (OECD) that require measurement of oxygen uptake.

h. Sampling and storage:

1) Grab samples—If analysis is begun within 2 h of sample collection, cold storage is unnecessary. Otherwise, keep sample at or below 4°C from the time of collection. Begin analysis within 6 h of collection; when this is not possible, store at or below 4°C and report length and temperature of storage. Never start analysis more than 24 h after grab sample collection.

2) Composite samples—Keep samples at or below 4°C during compositing. Limit

compositing period to 24 h. Use the same criteria as for storage of grab samples, starting the measurement of holding time from the end of the compositing period. State storage time and conditions with results.

2. Apparatus

a. Respirometer system: Use commercial apparatus and check manufacturer's instructions for specific system requirements, reaction vessel type and volume, and instrument operating characteristics.

b. Incubator or water bath: Use a constant-temperature room, incubator chamber, or water bath to control temperature to $\pm 1^{\circ}$ C. Exclude all light to prevent oxygen formation by algae in the sample. Use red, actinic-coated bottles for analysis outside of a darkened incubator.

3. Reagents

Formulations of reagent solutions are given for 1-L volumes, but smaller or larger volumes may be prepared according to need. Discard any reagent showing signs of biological growth or chemical precipitation. Stock solutions can be sterilized by autoclaving to provide longer shelf life.

a. Distilled water: Use only high-quality water distilled from a block tin or all-glass still (see Section 1080). Deionized water may be used but often contains high bacterial counts. The water must contain less than 0.01 mg heavy metals/L and be free of chlorine, chloramines, caustic alkalinity, organic material, or acids. Make all reagents with this water. When other waters are required for special-purpose testing, state clearly their source and quality characteristics.

b. Phosphate buffer solution, 1.5*N:* Dissolve 207 g sodium dihydrogen phosphate, NaH₂PO₄·H₂O, in water. Neutralize to pH 7.2 with 6*N* KOH (¶ 3*g* below) and dilute to 1 L.

c. Ammonium chloride solution, 0.71*N*: Dissolve 38.2 g ammonium chloride, NH_4Cl , in water. Neutralize to pH 7.0 with KOH. Dilute to 1.0 L; 1 mL = 10 mg N.

d. Calcium chloride solution, 0.25*N*: Dissolve 27.7 g $CaCl_2$ in water and dilute to 1 L; 1 mL = 10 mg Ca.

e. Magnesium sulfate solution, 0.41*N*: Dissolve 101 g MgSO₄·7H₂O in water and dilute to 1 L; 1 mL = 10 mg Mg.

f. Ferric chloride solution, 0.018*N*: Dissolve 4.84 g $\text{FeCl}_3 \cdot 6\text{H}_2\text{O}$ in water and dilute to 1 L; 1 mL = 1.0 mg Fe.

g. Potassium hydroxide solution, 6N: Dissolve 336 g KOH in about 700 mL water and dilute to 1 L. CAUTION: Add KOH to water slowly and use constant mixing to prevent excessive heat buildup. Alternately, use commercial solutions containing 30 to 50% KOH by weight.

h. Acid solutions, 1*N:* Add 28 mL conc H_2SO_4 or 83 mL conc HCl to about 700 mL water. Dilute to 1 L.

i. Alkali solution, 1N: Add 40 g NaOH to 700 mL water. Dilute to 1 L.

j. Nitrification inhibitor: Reagent-grade 2-chloro-6-(trichloromethyl) pyridine (TCMP) or equivalent.³*#(5)

k. Glucose-glutamic acid solution: Dry reagent-grade glucose and reagent-grade glutamic acid at 103° C for 1 h. Add 15.0 g glucose and 15.0 g glutamic acid to distilled water and dilute to 1 L. Neutralize to pH 7.0 using 6N potassium hydroxide (¶ 3g). This solution may be stored for up to 1 week at 4°C.

l. Electrolyte solution (for electrolytic respirometers): Use manufacturer's recommended solution.

m. Sodium sulfite solution, 0.025*N*: Dissolve 1.575 g Na_2SO_3 in about 800 mL water. Dilute to 1 L. This solution is not stable; prepare daily or as needed.

n. Trace element solution: Dissolve 40 mg $MnSO_4$ ·4H₂O, 57 mg H₃BO₃, 43 mg $ZnSO_4$ ·7H₂O, 35 mg (NH₄)₆ Mo₇O₂₄, and 100 mg Fe-chelate (FeCl₃-EDTA) in about 800 mL water. Dilute to 1 L. Sterilize at 120°C and 200 kPa (2 atm) pressure for 20 min.

*o. Yeast extract solution:*³ Add 15 mg laboratory- or pharmaceutical-grade brewer's yeast extract to 100 mL water. Make this solution fresh immediately before each test in which it is used.

*p. Nutrient solution:*³ Add 2.5 mL phosphate buffer solution (3*b*), 0.65 mL ammonium chloride solution (3*c*), 1.0 mL calcium chloride solution (3*d*), 0.22 mL magnesium sulfate solution (3*a*), 0.1 mL ferric chloride solution (3*f*), 1 mL trace element solution (3*n*), and 1 mL yeast extract solution (3*o*) to about 900 mL water. Dilute to 1 L. This nutrient solution and those of ¶s n and o above are specifically formulated for use with the OECD method.³ (NOTE: A 10:1 concentrated nutrient solution can be made and diluted accordingly.)

4. Procedure

a. Instrument operation: Follow respirometer manufacturer's instructions for assembly, testing, calibration, and operation of the instrument. NOTE: The manufacturer's stated maximum and minimum limits of measurement are not always the same as the instrument output limits. Make sure that test conditions are within the limits of measurement.

b. Sample volume: Sample volume or concentration of organic chemicals to be added to test vessels is a function of expected oxygen uptake characteristics and oxygen transfer capability of the instrument. Small volumes or low concentrations may be required for high-strength wastes. Large volumes may be required for low-strength wastes to improve accuracy.

c. Data recording interval: Set instrument to give data readings at suitable intervals. Intervals of 15 min to 6 h typically are used.

d. Sample preparation:

1) Homogenization—If sample contains large settleable or floatable solids, homogenize it with a blender and transfer representative test portions while all solids are in suspension. If there is a concern for changing sample characteristics, skip this step.

[©] Copyright 1999 by American Public Health Association, American Water Works Association, Water Environment Federation

2) pH adjustment—Neutralize samples to pH 7.0 with H_2SO_4 or NaOH of such strength (¶s 3*h* and ¶ 3*i*) that reagent quantity does not dilute the sample more than 0.5%.

3) Dechlorination—Avoid analyzing samples containing residual chlorine by collecting the samples ahead of chlorination processes. If residual chlorine is present, aerate as described in ¶ 5) below or let stand in light for 1 to 2 h. If a chlorine residual persists, add Na₂SO₃ solution. Determine required volume of Na₂SO₃ solution by adding 10 mL 1 + 1 acetic acid or $1 + 50 \text{ H}_2\text{SO}_4$ and 10 mL potassium iodide solution (10 g/100 mL) to a portion of the sample. Titrate with 0.025*N* Na₂SO₃ solution to the starch-iodine end point (see Section 4500-Cl.B). Add to the neutralized sample a proportional volume of Na₂SO₃ solution determined above, mix, and after 10 to 20 min check for residual chlorine. Re-seed the sample (see ¶ 4*h* below).

4) Samples containing toxic substances—Certain industrial wastes contain toxic metals or organic compounds. These often require special study and treatment.³

5) Initial oxygen concentration—If samples contain dissolved oxygen concentrations above or below the desired concentration, agitate or aerate with clean and filtered compressed air for about 1 h immediately before testing. Minimum and maximum actual DO concentrations will vary with test objectives. In some cases, pure oxygen may be added to respirometer vessels to increase oxygen levels above ambient.

6) Temperature adjustment—Bring samples and dilution water to desired test temperature $(\pm 1^{\circ}C)$ before making dilutions or transferring to test vessels.

e. Sample dilution: Use distilled water or water from other appropriate sources free of organic matter. In some cases, receiving stream water may be used for dilution. Add desired sample volume to test vessels using a wide-tip volumetric pipet or other suitable volumetric glassware. Add dilution water to bring sample to about 80% of desired final volume. Add appropriate amounts of nutrients, minerals, buffer, nitrification inhibitor if desired, and seed culture as described in \P s 4 *f* and h below. Dilute sample to desired final volume. The number of test vessels to prepare for each dilution depends on test objectives and number of replicates desired.

f. Nutrients, minerals, and buffer: Add sufficient ammonia nitrogen to provide a COD:N:P ratio of 100:5:1 or a TOC:N:P ratio of 30:5:1. Add 2 mL each of calcium, magnesium, ferric chloride, and trace mineral solutions to each liter of diluted sample unless sufficient amounts of these minerals are present in the original sample. Phosphorus requirements will be met by the phosphate buffer if it is used (1 mL/50 mg/L COD or ultimate BOD of diluted sample usually is sufficient to maintain pH between 6.8 and 7.2). Be cautious in adding phosphate buffer to samples containing metal salts because metal phosphates may precipitate and show less toxic or beneficial effect than when phosphate is not present. For OECD-compatible tests, substitute the nutrient, mineral, and buffer amounts listed in \P 3 *p* for the above nutrient/ mineral/buffer quantities.

g. Nitrification inhibition: If nitrification inhibition is desired, add 10 mg 2-chloro-6-(trichloromethyl) pyridine (TCMP)/L sample in the test vessel. Samples that may nitrify readily include biologically treated effluents, samples seeded with biologically treated

effluents, and river waters.⁴

h. Seeding: See 5210B.4d1) for seed preparation. Use sufficient amounts of seed culture to prevent major lags in the oxygen uptake reaction but not so much that the oxygen uptake of the seed exceeds about 10% of the oxygen uptake of the seeded sample.

Determine the oxygen uptake of the seeding material as for any other sample. This is the seed control. Typically, the seed volume in the seed control should be 10 times the volume used in seeded samples.

i. Incubation: Incubate samples at 20°C or other suitable temperature ± 1.0 °C. Take care that the stirring device does not increase the temperature of the sample.

5. Calculations

To convert instrument readings to oxygen uptake, refer to manufacturer's procedures. Correct oxygen uptake for seed and dilution by the following equation:

$$C = [A - B(S_A/S_B)](1000/N_A)$$

where:

C = corrected oxygen uptake of sample, mg/L,

A = measured oxygen uptake in seeded sample, mg,

B = measured oxygen uptake in seed control, mg,

 S_A = volume of seed in Sample A, mL,

 S_B = volume of seed in Sample B, mL, and

 N_A = volume of undiluted sample in Sample A, mL.

6. Quality Control

Periodically use the following procedure to check distilled water quality, instrument quality, instrument function, and analytical technique by making oxygen uptake measurements using a mixture of glucose and glutamic acid as a standard check solution.

Adjust water for sample formulation to test temperature and saturate with DO by aerating with clean, organic-free filtered air. Protect water quality by using clean glassware, tubing, and bottles.

Prepare a *test solution* by adding 10 mL glucose-glutamic acid solution (¶ 3*k*); 6 mL phosphate buffer (¶ 3*b*); 2 mL each of ammonium chloride (¶ 3*c*), magnesium sulfate (¶ 3*e*), calcium chloride (¶ 3*d*), ferric chloride (¶ 3*f*), and trace element solution (¶ 3*n*) to approximately 800 mL water. Add 10 mg nitrification inhibitor (TCMP)/L. Add sufficient seed from a suitable source as described in ¶ 4*h* to give a lag time less than 6 h (usually 25 mL supernatant from settled primary effluent/L test solution is sufficient). Dilute to 1 L. Adjust temperature to $20 \pm 1^{\circ}$ C.

Prepare a *seed blank* by diluting 500 mL or more of the seed solution to 800 mL with distilled water. Add the same amount of buffer, nutrients, and TCMP as in the test solution, and dilute to 1 L. Adjust temperature to $20 \pm 1^{\circ}$ C.

Place test solution and seed blank solution in separate reaction vessels of respirometer

and incubate for 5 d at 20°C. Run at least three replicates of each. The seed-corrected oxygen uptake after 5 d incubation should be 260 ± 30 mg/L. If the value of the check is outside this range, repeat the test using a fresh seed culture and seek the cause of the problem.

7. Precision and Bias

a. Precision: No standard is available to check the accuracy of respirometric oxygen uptake measurements. To obtain laboratory precision data, use a glucose-glutamic acid mixture (¶ 6 above) having a known theoretical maximum oxygen uptake value. Tests with this and similar organic compound mixtures have shown that the standard deviation, expressed as the coefficient of variation, C_{ν} , is approximately 5% for samples having total

oxygen uptakes of 50 to 100 mg/L and 3% for more concentrated samples.^{1,2} Individual instruments have different readability limits that can affect precision. The minimum response or sensitivity of most commercial respirometers ranges from 0.05 to 1 mg oxygen. Check manufacturer's specifications for sensitivity of the instrument at hand.

b. Control limits: To establish laboratory control limits, perform a minimum of 25 glucose-glutamic acid checks over a period of several weeks or months and calculate mean and standard deviation. If measured oxygen uptake in 5 d at 20°C is outside the 260 ± 30 mg/L range, re-evaluate procedure to identify source of error. For other samples, use the mean ± 3 standard deviations as the control limit.

c. Working range and detection limits: The working range and detection limits are established by the limits of each commercial instrument. Refer to manufacturer's specifications.

8. References

- 1. YOUNG J.C. & E.R. BAUMANN. 1976. The electrolytic respirometer— Factors affecting oxygen uptake measurements. *Water Res.* 10:1031.
- 2. YOUNG, J.C. & E.R. BAUMANN. 1976. The electrolytic respirometer— Use in water pollution control plant laboratories. *Water Res.* 10:1141.
- 3. ORGANIZATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT. 1981. Method 5.2, Annex V, Part C *in* OECD Guidelines for Testing of Chemicals. OECD, Paris, France.
- 4. YOUNG, J.C. 1973. Chemical methods for nitrification control. J. Water Poll. Control Fed. 45:637.

9. Bibliography

- HEUKELEKIAN, H. 1947. Use of direct method of oxygen utilization in waste treatment studies. *Sew. Works J.* 19:375.
- CALDWELL, D.H. & W.F. LANGELIER. 1948. Manometric measurement of the biochemical oxygen demand of sewage. *Sew. Works J.* 20:202.
- GELLMAN, I. & H. HEUKELEKIAN. 1951. Studies of biochemical oxidation by direct methods. *Sew. Ind. Wastes.* 23:1267.

JENKINS, D. 1960. The use of manometric methods in the study of sewage and trade wastes. © Copyright 1999 by American Public Health Association, American Water Works Association, Water Environment Federation

In Waste Treatment, p. 99. Pergamon Press, Oxford, U.K.

MONTGOMERY, H.A.C. 1967. The Determination of Biochemical Oxygen Demand by Respirometric Methods. *Water Res.* 1:631.

CEDENA, F., A. DROHOBYCZAR, M.I. BEACH & D. BARNES. 1988. A novel approach to simplified respirometric oxygen demand determinations. *Proc. 43rd Ind. Waste Conf.*, Purdue Univ., Lafayette, Ind.

Endnotes

1 (Popup - Footnote)

* APPROVED BY STANDARD METHODS COMMITTEE, 1997.

2 (Popup - Footnote)

* Nitrification Inhibitor, Formula 2533, Hach Co., Loveland, CO, or equivalent.

3 (Popup - Footnote)

* Some analysts have reported satisfactory results with 2-chloro-6-(trichloromethyl) pyridine (Nitrification Inhibitor, Formula 2533, Hach Co., Loveland, CO, or equivalent).

4 (Popup - Footnote)

[†] Wheaton 2-L BOD bottle No. 227580, 1000 North Tenth St., Millville, NJ, or equivalent.

5 (Popup - Footnote)

* Formula 2533, Hach Chemical Co., Loveland, CO, or equivalent. NOTE: Some commercial formulations are not pure TCMP. Check with supplier to verify compound purity and adjust dosages accordingly.